Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cytotherapy ; 25(6 Supplement):S232-S233, 2023.
Artículo en Inglés | EMBASE | ID: covidwho-20237943

RESUMEN

Background & Aim: Immunological characteristics of COVID-19 show pathological hyperinflammation associated with lymphopenia and dysfunctional T cell responses. These features provide a rationale for restoring functional T cell immunity in COVID-19 patients by adoptive transfer of SARS-CoV-2 specific T cells. Methods, Results & Conclusion(s): To generate SARS-CoV-2 specific T cells, we isolated peripheral blood mononuclear cells from 7 COVID-19 recovered and 13 unexposed donors. Consequently, we stimulated cells with SARS-CoV-2 peptide mixtures covering spike, membrane and nucleocapsid proteins. Then, we culture expanded cells with IL-2 for 21 days. We assessed immunophenotypes, cytokine profiles, antigen specificity of the final cell products. Our results show that SARSCoV- 2 specific T cells could be expanded in both COVID-19 recovered and unexposed groups. Immunophenotypes were similar in both groups showing CD4+ T cell dominance, but CD8+ and CD3+CD56+ T cells were also present. Antigen specificity was determined by ELISPOT, intracellular cytokine assay, and cytotoxicity assays. One out of 14 individuals who were previously unexposed to SARS-CoV-2 failed to show antigen specificity. Moreover, ex-vivo expanded SARS-CoV-2 specific T cells mainly consisted of central and effector memory subsets with reduced alloreactivity against HLA-unmatched cells suggesting the possibility for the development of third-party partial HLA-matching products. In conclusion, our findings show that SARSCoV- 2 specific T cell can be readily expanded from both COVID-19 and unexposed individuals and can therefore be manufactured as a biopharmaceutical product to treat severe COVID-19 patients.Copyright © 2023 International Society for Cell & Gene Therapy

2.
Encyclopedia of Sleep and Circadian Rhythms: Volume 1-6, Second Edition ; : 389-392, 2023.
Artículo en Inglés | Scopus | ID: covidwho-2297868

RESUMEN

"Narcolepsy due to a medical condition” (symptomatic or secondary narcolepsy) results from a specific underlying medical or neurological condition. Common causes are inherited disorders, tumors, head trauma, demyelinating diseases and stroke. Similar to idiopathic narcolepsy, aberrant T cell mediated cytotoxicity to host antigens in hypocretin neurons might be the underlying pathophysiology. Secondary narcolepsy cases have varying ages of onset, typically following a specific underlying medical or neurological disorder. Primary sleep disorders, mental disorders, or drug/substance use needs to be ruled out. Although the main treatment should be controlling underlying pathologic processes, use of wake promoting medications are often warranted. © 2023 Elsevier Inc. All rights reserved

3.
Cytotherapy ; 24(5):S109-S110, 2022.
Artículo en Inglés | EMBASE | ID: covidwho-1996725

RESUMEN

Background & Aim: Background. Immunological characteristics of COVID-19 show pathological hyperinflammation associated with lymphopenia and dysfunctional T cell responses. These features provide a rationale for restoring functional T cell immunity in COVID-19 patients by adoptive transfer of SARS-CoV-2 specific T cells. Methods, Results & Conclusion: Methods. To generate SARS-CoV-2 specific T cells, we isolated peripheral blood mononuclear cells from 7 COVID-19 recovered and 13 unexposed donors. Consequently, we stimulated cells with SARS-CoV-2 peptide mixtures covering spike, membrane and nucleocapsid proteins. Then, we culture expanded cells with IL-2 for 21 days. We assessed immunophenotypes, cytokine profiles, antigen specificity of the final cell products. Results. Our results show that SARS-CoV-2 specific T cells could be expanded in both COVID-19 recovered and unexposed groups. Immunophenotypes were similar in both groups showing CD4+ T cell dominance, but CD8+ and CD3+CD56+ T cells were also present. Antigen specificity was determined by ELISPOT, intracellular cytokine assay, and cytotoxicity assays. One out of 14 individuals who were previously unexposed to SARS-CoV-2 failed to show antigen specificity. Moreover, ex-vivo expanded SARS-CoV-2 specific T cells mainly consisted of central and effector memory subsets with reduced alloreactivity against HLA-unmatched cells suggesting the possibility for the development of third-party partial HLA-matching products. Conclusion. In conclusion, our findings show that SARS-CoV-2 specific T cell can be readily expanded from both COVID-19 and unexposed individuals and can therefore be manufactured as a biopharmaceutical product to treat severe COVID-19 patients.

4.
Cytotherapy (Elsevier Inc.) ; 24(5):S109-S110, 2022.
Artículo en Inglés | Academic Search Complete | ID: covidwho-1783861
5.
Nature ; 591(7848): 124-130, 2021 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1368933

RESUMEN

Although infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has pleiotropic and systemic effects in some individuals1-3, many others experience milder symptoms. Here, to gain a more comprehensive understanding of the distinction between severe and mild phenotypes in the pathology of coronavirus disease 2019 (COVID-19) and its origins, we performed a whole-blood-preserving single-cell analysis protocol to integrate contributions from all major immune cell types of the blood-including neutrophils, monocytes, platelets, lymphocytes and the contents of the serum. Patients with mild COVID-19 exhibit a coordinated pattern of expression of interferon-stimulated genes (ISGs)3 across every cell population, whereas these ISG-expressing cells are systemically absent in patients with severe disease. Paradoxically, individuals with severe COVID-19 produce very high titres of anti-SARS-CoV-2 antibodies and have a lower viral load compared to individuals with mild disease. Examination of the serum from patients with severe COVID-19 shows that these patients uniquely produce antibodies that functionally block the production of the ISG-expressing cells associated with mild disease, by activating conserved signalling circuits that dampen cellular responses to interferons. Overzealous antibody responses pit the immune system against itself in many patients with COVID-19, and perhaps also in individuals with other viral infections. Our findings reveal potential targets for immunotherapies in patients with severe COVID-19 to re-engage viral defence.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/fisiopatología , Interferones/antagonistas & inhibidores , Interferones/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Anticuerpos Antivirales/sangre , Formación de Anticuerpos , Secuencia de Bases , COVID-19/sangre , COVID-19/virología , Femenino , Humanos , Inmunoglobulina G/inmunología , Interferones/metabolismo , Masculino , Neutrófilos/inmunología , Neutrófilos/patología , Dominios Proteicos , Receptor de Interferón alfa y beta/antagonistas & inhibidores , Receptor de Interferón alfa y beta/inmunología , Receptor de Interferón alfa y beta/metabolismo , Receptores de IgG/inmunología , Análisis de la Célula Individual , Carga Viral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA